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FINAL REPORT
PRELIMINARY DESIGN OF A MINI-BRAYTON

COMPRESSOR - ALTERNATOR - TURBINE
(CAT)

CONTRACT NAS3-16739

1. INTRODUCTION AND SUMMARY

This report, prepared by AiResearch Manufacturing Company of

Arizona, A Division of The Garrett Corporation, is presented in fulfill-

ment of the data requirements of the Mini-Brayton Contract NAS3-16739.

This program consists of the following four tasks pertaining to the

study of a 0.5 to 2.0 kwe closed Brayton cycle power system.

Task I - Parametric Study

Task II - Off-Design Study

Task III - Preliminary Design

Task IV - Reporting

Many space missions encompassing near earth orbit, interplanetary

and deep space vehicles are planned for the next twenty years. These

missions will require an electrical power source which can supply from

several hundred watts to a few thousand watts of power. Among the

leading candidate power systems are isotope-Brayton, reactor thermo-

electric (RTG) and solar-plus storage battery systems.

In the required power range, isotopic fuels offer the most promise

as a heat source from which to make electricity. Since isotopes are

-costly, it follows that the efficiency of the power conversion system

must be high. Of the three systems mentioned, the Brayton system has

the best potential for high efficiency.
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Missions of many years duration require a power conversion system

of unprecedented reliability. The system must be able to operate with-

out human attendance, must supply uninterrupted power, and must operate

in the harsh environment of outer space. As simple a system design as
possible with few moving parts and, if possible, no rubbing parts would
be desirable if this high reliability is to be attained.

An extensive study was performed during 1972 by the NASA-Lewis
Research Center to evaluate the isotope-Brayton electric power system.
This system was compared, for several typical missions, on indices such
as cost effectiveness, reliability, and performance, with other power
system approaches.

The results of the study were reported in NASA TM X-68072 and pre-
sented at the Seventh IECEC in San Diego, California, on September 25-
29, 1972. It was concluded that the cost effectiveness of the Brayton

system depends upon the nature of the mission. For a number of

unmanned satellite missions requiring from 600 to 3000 watts electric,

the isotope-Brayton system cost, on a "dollars-per-watt" basis, was

comparable to solar array/battery systems and about one-fourth that of
RTG systems. These favorable economic considerations, combined with a
10 year Brayton technology base established at NASA-Lewis, stimulated

further investigation of the mini-Brayton concept.

1.1 General Program Description

The purpose of this mini-Brayton study was to further develop

design philosophy for low power level isotope-Brayton systems and to

conduct a preliminary design for the rotating component of the system.

The study has stressed, during Tasks I and II, the following design

criteria:

(a) Simplicity of design

(b) High reliability

APS-5440-R
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(c) Long life (five to ten years)

(d) High efficiency at low power level

(e) Minimum extrapolation of proven technology

(f) System versatility

Also an important goal for the design presented herein was mis-

sion versatility. It is desirable, particularly from a cost stand-

point, to select one system that may be easily adapted to various

mission power requirements.

The schedule for the study program is shown in Figure 1-1. The

contract start date was June 26, 1972. The results of the study have,

to date, been very encouraging and some important design philosophy

relative to very small Brayton systems has been postulated, explored,

and defined. The reference cycle and system components are described

in Section 1.3 of this report.

The balance of the study, Task III, was devoted to a preliminary

design of the mini-Brayton (a schematic is presented in Figure 1-2

and a cross section is shown in Figure 1-3). The unique design

features incorporated into the design include:

(a) Hydrodynamic (self-pressurized) foil gas bearings

(b) Gas cooling of the alternator and bearings (liquid loops

not required anywhere in the power system--a direct or

gas flow radiator is used)

(c) A solid rotor Rice alternator

(d) Motor start up of the CRU (combined rotating unit)

APS-5440-R
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Further discussion of the study objectives and guide lines is

included in Section 1.2.

1.2 Program Objectives

Table 1-1 lists the program design goals.. Optimum system charac-

teristics over the entire power output range were determined by per-

forming a wide-range parametric study. Mathematical models, in the

form of a series of digital computer programs are used during the optim-

ization procedure. These models, whose accuracy has been proven

through correlation with test data for components and also for complete

systems, provide the capability to explore design questions in great

scope and depth in a short period of time.

A further important objective of Task I was, having defined com-

ponent design characteristics, to assess the ability to develop those

components to the degree necessary within the limitations of present

technology. This is done by comparing the design requirements to

those already proven with existing hardware.

Task II was performed using a sophisticated off-design performance

computer program. With this program, the off-design performance of a

fixed hardware system (i.e. a particular and unique system design) can

be predicted. This program has been verified by comparison to actual

systems in operation. Important conclusions were drawn from the Task

II study relative to the number and type of systems required to cover

the power spectrum of interest.

An additional important facet of the study was the determination

of system performance sensitivity to the various individual design

parameters. This question was studied in two parts. The first was

the impact on system optimization of constraints placed on component

performance. The second was the evaluation of the impact on system

performance and/or weight of a component unable to meet its design

goal (assuming this was discovered during the development program).

APS-5440-R
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TABLE 1-1

PROGRAM OBJECTIVES

TASK I: Parametric Study Over Power Range

o Define optimum system characteristics

o Determine system performance sensitivity
to individual design parameters

o Assess compatibility of system designs
and existing technology base

TASK II: Off-Design Performance

o Determine reference system design point

o Select reference system components

o Determine the number of unique engine
designs required to cover power level
spectrumm

TASK III: Preliminary Design

o Compressor design integration with
alternator heat exchanger

o Gas bearings (minimize losses)

o Thermal design (gas cooling)

o Alternator - EM design and motor
starting capability

APS-5440-R
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The objectives of the program were to be pursued while constraining

the study within certain fundamental guidelines. These guidelines were

specified by the NASA, by the contract, and by technical directive

during the conduct of the study. These are summarized in Table 1-2.

TABLE 1-2

MINI-BRAYTON STUDY GUIDELINES

General

o System heat derived from 1i, 2 or 3 isotope heat
source capsules, each having a 2400 watt capacity

o Component sizing and performance predictions
based upon emperical data base

o System fixed weights supplied by the NASA

o System parasitic losses (electronic) supplied by
the NASA

o Meteoroid criteria defined in NASA SP-8013

o Armor protection--(Refer to Astronautics and Aero-
nautics, Power Systems for Space Flight Volume II,
Academic Press, 1962, Pages 551-579)

Specific

o Assume turbine inlet temperature = 1600F

o Assume use of a gas radiator with stainless steel
tubes

o Assume use of foil gas bearings

o Alternator hot spot limit = 400 0F

o Radiator sink temperature = -100F

APS-5440-R
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1.3 Conclusion and Summary Data

1.3.1 Conclusions

The conclusions drawn from this study have been quite encouraging.
All of the key design goals, summarized in Table 1-3, were achieved.

Table 1-4 shows the results of the study to determine development
risk. Forced variation in individual parameters were made by using
the off-design computer model of the system. In every instance, a
performance loss was prevented by assuming that the radiator surface

area would be increased (resulting in a lower compressor inlet tem-

perature). Hence, radiator size and weight can be used as a common
index for assessing system weight penalty. It can be seen that for

all of the parameters, the resulting weight penalty is modest.

All Task III key design goals were achieved, as summarized in
Table 1-5.

TABLE 1-3

TASK I AND TASK II CONCLUSIONS

o A single set of hardware would operate efficiently over the
entire power range

o The best design point was at the three heat source capsule
condition

o Any mission requiring up to approximately 2500 watts could
be satisfied with a single system comprised of the reference
recuperator and Brayton Rotating Unit (BRU) hardware and the
reference radiator or a space radiator sized specifically for
the mission. (The reference components are described in
Section 1.3.2).

o The development risk involved in the selected design is low,
both in terms of compatibility of design with existing tech-
nology and in program impact due to component performance
variation.

APS-5440-R
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TABLE 1-4

DEVELOPMENT RISK ASSESSMENT

Potential
Design Value Deviation *Penalty (ibs)

T 1  536 -- --

nc 76.1 -2% 16

nt  83.2% -2% 32

0.980 -0.012 11

E 0.975 -0.010 12

r 1.50 -- --

N 52000 rpm -- --

n 0.917 -0.010 2

Nsc 0.07 -- --

TSINK 450 +10OR 5

*Weight increase due to enlarging radiation surface

APS-5440-R
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TABLE 1-5

TASK III CONCLUSIONS

o HIGH LEVEL OF CONFIDENCE IN DESIGN

o Gas cooling of alternator

o No critical speed problems

o Hydrodynamic gas bearings

o ONE ROTATING UNIT CAN COVER 0.5 - 2.0 KW APPLICATIONSe

o HIGH RELIABILITY

o HIGH EFFICIENCY

o LOW COST DESIGN

APS-5440-R
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1.3.2 Summary Data

The initial part of the study was intended to not only result in

selection of a specific reference cycle but to also define the general

characteristics of low output closed Brayton cycle systems. Figure

1-4 shows the general case data. The line which is an envelope of and

is tangent to the lines defining the minimum specified weight for a

fixed number of heat source capsules itself defines the minimum

specific weight achievable at any power level if the system is optim-

ized at that power level. A real system, designed according to the

constraints and guidelines imposed by this study, cannot be designed

to fall below the general boundary shown.

Figure 1-5 shows the results of a study to define systems using 
a

basic configuration (fixed hardware) of CRU and recuperator, combined

with various numbers of multi-hundred watt heat sources and radiators

of various sizes and configurations. In this study, the radiator

parameters that were varied were surface area and radiator core pres-

sure drop. This data is very useful for mission planning. For a

given mission, one can determine the power conversion system 
weight

and the number of heat source capsules required to produce the desired

electrical power.

The reference cycle resulting from the study is also plotted in

Figure 1-5. The complete definition of the reference cycle is 
shown

in Figure 1-6. The off design performance and weight summaries of the

reference design are presented in Table 1-6 and 1-7, respectively.
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RADIATOR CONFIGURATION OPTIMIZATION
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THREE CAPSULE MINIMUM SPECIFIC WEIGHT
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The design and performance details for the reference system

radiator, recuperator, and CRU are summarized in Tables 1-8, 1-9, and

1-10.

TABLE 1-6

SYSTEM PERFORMANCE AT THREE POWER LEVELS

Number of Capsules

3 2 1

Alternator output power, kw 2.094 1.443 0.633

Control power, kw 0.082 0.069 0.053

Net cycle efficiency, percent 28.0 28.6 24.2

Compressor efficiency, percent 76.1 76.1 75.8

Turbine efficiency, percent 83.2 82.0 79.7

Alternator efficiency, percent 91.7 92.1 90.2

Lost pressure ratio parameter (8) 0.98 0.975 0.961

Recuperator effectiveness (Er ) 0.975 0.980 0.981

Compressor inlet temperature, oR 536 502 469

Compressor inlet pressure, psia 70.8 44.2- 21.0

Compressor pressure ratio 1.5 -1.54 1.59

Bearing loss, kw 0.241 0.209 0.180

Windage loss, kw 0.068 0.047 0.025

Compressor flow rate, lb/sec 0.357 0.236 0.117

Turbine inlet temperature, oR 2060 2060 2060

CRU speed, rpm 52,000 52,000 52,000

APS-5440-R
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TABLE 1-7

SYSTEM WEIGHT FOR THREE POWER LEVELS

Number of Capsules (wt in ibs)

3 2 1

Combined rotating unit 31 31 31

Recuperator 106 106 106

Radiator 160 160 160

Ducting (hot end only) 12 10 8

Capsule and HSHX 306 204 102

Super insulation 78 72 66

Structure 55 53 51

PLR 20 15 10

Electronics 15 15 15

TOTAL 783 666 549

APS-5440-R
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Fixed weights to be used in system specific weight estimates are:

Number of MHW capsules '1 2 3

Capsule and HSHX weight (ib) 102 204 306

Super insulation weight (lb) 66 72 78

Structure weight (ib) 51 53 55

Parasitic load resistor weight (lb) 10 15 20

Electonrics weight (lb) 15 15 15

Cycle effiency and system specific weight had been defined as:

Gross cycle efficiency =

Gross power at alternator terminals
Heat input to cycle working fluid

System specific weight (lb/kw) =

Total of variable weights
Gross power at alternator terminals

To achieve consistency in reporting efficiency and'specific weight,
the following terminology and computing methods were adopted:

Buss bar efficiency =

Power at alternator terminals - electronic losses
2400 watts X number of MHW capsules

Specific weight (lb/kw) =

Total weight (including fixed weights)
Power at alternator terminals - electronic losses

APS-5440-R
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TABLE 1-8

MINI-BRU REFERENCE RADIATOR
STAINLESS STEEL/ALUMINUM ARMOR AND FINS

Total area, ft2  125.3

Gas flow rate, lb/sec 0.3573 (XeHe 83.8)

Tube length, ft 8.3205

Radiator diameter, ft 4.8

Inlet temperature, oF 733.1

Outlet temperature, OF 536

SS tube wall thickness, in. 0.030

Fin thickness, in. 0.040

Armor thickness, in. 0.0716

Number of tubes 41

Tube spacing, in. 4.4

Header dimension, in. 1.5224

Header weight, lb 33.1

Core weight, lb* 117.6

Total weight, lb 160.3

Sink temperature, oF 450

*Includes stainless steel tubes, fins, coating,
and armor.
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TABLE 1-9

MINI-BRAYTON
REFERENCE RECUPERATOR
STAINLESS-STEEL/NICKEL
PLATE-FIN CONFIGURATION

Weight, lb 106

Width, in. 5.023

Height, in. 9.646

Core length, in. 24.427

Overall length, in. 28.777

Splitter plate thickness, in. 0.008

Side plate thickness, in. 0.100

Low pressure side

Splitter plate spacing, in. 0.101

Fin thickness, in. 0.004

Fin length, in. 0.100

Number of fins per in. 20

High pressure side

Splitter plate spacing, in. 0.101

Fin thickness, in. 0.004

Fin length, in. 0.100

Number of fins per in. 20

Total fractional pressure drop 0.006968

APS-5440-R
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TABLE 1-10

REFERENCE CRU DATA

Total CRU weight, lb 31

CRU rotating speed, rpm 52,000

Turbine Data

Diameter, in. 3.0

Pressure ratio 1.47

Efficiency 0.832

Compressor Data

Diameter, in. 2.3

Pressure ratio 1.50

Efficiency 0.761

Foil journal bearing diameter, in. 1.0

Thrust bearing ID, in. 1.0

Thrust bearing OD, in. 1.75

Alternator Physical Data

Total weight, lb 10.42

Rotor weight, lb 1.053

Rotor diameter, in. 1.5

Rotor length, in. 3.72

Frame OD, in. 4.14

Frame width, in. 3.38

Stack length, in. 0.72

Alternator EM Efficiency 0.917

APS-5440-R
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2. TASK I - PARAMETRIC STUDY AND TASK II - OFF DESIGN STUDY

2.1 Summary of Analytical Approach

Details of the Task I and Task II analyses, including the method

used to achieve system optimization and a description of the analytical

tools employed are described in this section. The rationale leading to

the selection of the reference system and many design approaches inves-

tigated prior to the final selection are also discussed. The compon-

ent selection justification is documented, as well as a review of the

important design considerations for the various components.

The data generated during this part of the study is the result of

the application of a cascading series of the most sophisticated com-

puter design tools existing in the aerospace industry. The automated

procedure goes from basic thermodynamic cycle optimization to detail

component sizing to automatic machine plotting of the results.

2.1.1 System Specifications

The specifications designated by the NASA defined the parametric

and geometric ranges to be covered in the study. These were:

(a) Compressor

(1) Cycle temperature ratio: T1/T2

(2) Pressure ratio: 1.6 through 2.2

tangential gas velocity
(3) Slip factor (defined as tangential gas velocity)wheel tip speed

APS-5440-R
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(b) Turbine

(1) Specific speed

(2) Lost pressure ratio: 8 factor, where 8 = rt/r c
rt /rc = 0.92, 0.94, 0.96

(c) Working Fluid

(1) He/Xe, Mw = 60, 83.8, 39.94

(2) Argon

(3) Krypton

(d) Rotating speed = 48,000 rpm - 60,000 rpm

(e) Recuperator

(1) Various core geometries

(2) Effectiveness = 0.90, 0.925, 0.95

(f) Radiator

(1) With and without internal fins in tubes

(2) Various internal fin geometries

(3) All aluminum construction

(4) Stainless steel tubes and headers with aluminum armor

and fins

APS-5440-R
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(g) Heat source H/X (*): Vary cores

(h) Alternator H/X: Vary cores

2.1.2 Data Requirements

The study results were to include but not be limited to the fol-

lowing system and component characteristics:

(a) Turbine and Compressor

(1) Size and weight

(2) Efficiency

(3) Pressure ratio

(4) Specific speed

(b) Alternator

(1) Physical dimensions

(2) Electromagnetic performance

(c) System

(1) Overall efficiency

(2) Component weights and sizes

*Sketches and design considerations for the heat source were
furnished by the NASA.
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(3) Molecular weights (fluid)

(4) Duct sizes

(5) Flow rates

(6) State points (pressure and temperature)

(d) Windage Losses

(e) Bearing Losses

2.1.3 Analytical Procedure or Methodology

The study progresses from wide range parametric studies in the

initial phases, resulting in later elimination by inspection of a large
number of systems.

After the envelope was defined for minimum weight systems over the
entire power level range (refer to Figure 1-4), only specific system

designs lying close to that envelope were investigated further.

Several of AiResearch's component and cycle design computer pro-

grams were merged in order to define the geometry and performance of a

complete closed, recuperated Brayton cycle power system. During the

Task I study, literally tens-of-thousands of complete systems were

designed, sorted and machine-plotted in order to define the minimum

envelope of weight and power. Figure 2-1 describes, schematically, the
analytical procedure:

APS-5440-R
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POWER SYSTEM DESIGN METHODOLOGY
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ON TAPE

RECUPERATOR DESIGN STATE RADIAT
I POINTS READ FROM TAPE STEPS DESCRIPTION SUMMARY
6 P PLOTRECUPERATOR RADIATOR
o STEP7 SUMMING

STEP 3 DESIGN DESIGN
PROGRAM PROGRAM PROGRAM

RECUPERATOR RADIATOR SUMMARY
RECUPERATOR GEOMETRY CONSTRAINTS PRINT OUT

RECUPERATOR STORED READ IN
CORE MATRIX;ON TAPE

DATA READ IN

RECUPERATOR
STEP 4 DESCRIPTION

MS 3063-10

FIGURE 2-1



N AIRESEARCH MANUFACTURING COMPANY OF ARIZONA
A DIVISION OF THE GARRETT CORPORATION

Step 1

As can be seen in Figure 2-1 the input to the cycle design portion

of the analysis consists mainly of the aerodynamic, thermodynamic and

empirical specifications of the desired systems. These values include:

o Desired recuperator effectivenesses (up to 12 values) - Er

o Desired rotor speed (up to 12 values) - N

o Desired compressor specific speed (up to 12 values) - N
-c

o Desired compressor pressure ratio (up to 12 values) - r

o Desired compressor inlet temperature (up to 12 values) - T1

o Desired turbine inlet temperature - T6

o Desired output power or input power (up to 12 values) - PWR

o Compressor bleed fraction (up to 12 values) - BL

o Desired pressure loss distribution (up to 12 values) - AP/P

o Predicted alternator efficiency - ng

o Specification of working fluid properties

o Desired compressor slip factor, turbine velocity factor and

turbine diffuser recovery - SC, Fv , CPR

o Bearing power loss - PWR~

o Alternator sizing coefficient - C
g
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Inherent to the cycle program are also empirical data bases for

turbomachinery efficiency predictions (based on Reynold's number, size,

pressure ratio and specific speed) and for alternator windage calcula-

tion.

When a cycle definition is complete, the following values have

been generated:

o Compressor, turbine and alternator diameter

o Compressor, turbine and alternator efficiency

o Rotating group weight

o Gross alternator electrical output

o Alternator windage

o Gross cycle efficiency

o All state point temperatures, pressures and fractional pres-

sure drops

Step 2

As the data compliation for each computed cycle is completed, the

pertinent parameters are written out to magnetic tape storage for fur-

ther processing upon completion of the cycle analysis. When the

desired range of cycle parameters has been explored and the output

from each stored, the analysis proceeds into the recuperator design

program. The output for each cycle can also be printed at this point.

A typical print-out is shown in Figure 2-2.
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TYPICAL CYCLE DESIGN PROGRAM OUTPUTI

CASF NUM9F( P

GFNENATOR OUTPUT 6F:.RT
nO DIAMETER GROSS SHAFT POW.OUT. GEN. WINDAGE LOSS CYCLE EFFTCIENCY

(KW) (IN.) (KW) (KW) ( --- )
.2n77PE*o01 .i5000E*01 25849E*Ol .72613E-01 .32068E*00

PECIPERAToP EFFECT. CRI ROTATION. SPEED BLEED FLOW FRACTION COMP*TOT.TEMP.RATIO PRESS* LOSS FACTOR
( --- I (RPM) ( ... ) ( - -) (PRT/PRC)
.9759nE+0o .52000E+O5 *20000E-O1 .12j13E01 .98000E400

COMP. ADTAR. EFF. COkiR. ROTOR DTAM. COMPR. PRESS. RATIO REQD, SURFACE FINISH COMPR, SPEC. SPEED
--. ) (TN.) (..) (MICRO IN.) (--- )
.7M127E00o .23003E*01 *15000E+01 *10226E*02 .700nOE-01

TTURj. ADTaR. EFF. TJRR. ROTOR DIAM. TURB. PRESS.RATIO TURB. ROTOR TIP SPEED TURBe SPEC. SPEED

( .... ) (IN.) (.) (FPS) (-- .)

DI *R3161E*00 *28543E*O1 .14700E401 .64762E*03 .94408E-01
url

wo:.. COMPR. + TURP. WEIGHT GFi. PER. PEY. NO. COMPRo MEAN SPEC.SP. COMPR. EXPAN.EFF. BEN. DISK REY. NO*
0 =,, (L8,1 ( ---- ) ( .... ) I-.--) (-w. .

S1461QE*00 .30262E*05 .44337E*02 .87925E+00 .11351E*07

COMPONFNT rLO" INLET TEMP. INLET PRESS. OUTLET TEMP. OUTLET PRESS.

(LR/SEC) (R) (PSIA) (R) (PSIA)

COMPRESSOR .35730E+00 .53600E+03 .70826E+o2 .65998E+03 .10624E*03

RECUERATnO .35nlAF+0n .68319E+03 .ln589Fn3 .17638E+04 .10553E+03

HEATER .35n16F*00 .1?638E+04' .10553E*03 .20600E*04 .10535E*03

TJRRINF .35n16F*00 .20600E+04 *1053sE*03 .18152E#04 .71669E*02

RECUPERATOP .35730E+00 .17921E+04 .71669E,02 .73311E*03 .71301E*02

*O3iF3 .c730+f0 .7l311E*n3 .71301E*02 .31600E*03 .
7
1063E+02

FIGURE 2-2
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Step 3

The core matrix data (i.e., heat transfer and pressure drop maps)

and the desired margin for heat transfer and pressure drop are read-in.

From the data stored for each computed cycle, the variables pertinent

to recuperator design effectiveness (inlet conditions and gas proper-

ties) are obtained. One or more recuperators are designed for each

computed cycle.

Step 4

The recuperator design parameters for each design are, in turn,

stored on another tape. The individual recuperator designs can be

called for and printed at this point. A typical print-out is shown in

Figures 2-3 and 2-3 Cont'd.

Step 5

The design of the gas flow radiators proceeds in a manner similar

to that for the recuperator design.

Step 6

The radiator design program output is likewise stored on a third

tape, and/or printed out in the format presented in Figure 2-4.

Step 7

The summation program serves the function of merging the indivi-

dual component designs and cycles into a total system representation.

The summation program also sizes the minor components, such as ducting,

and controls, for each system.
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TYPICAL RECUPERATOR DESIGN PROGRAM OUTPUTI

TNPUJT GEOMETRY FOR COUNIEP FLOW HEAT EXCHANGER DFSIGN PROGRAM

'INI-RRU RECUPERATOR

GAS UA MARGIN OP MARGIN F MARGIN J MARGIN
(-...) (.....) (.....) (.....)

L.P. SIDE --------------------- XE/HE83 .2000 .2n00 -0.0000 -0.0000
H.P. SIDE ------------------- XE/HER3 .2000 .2000 -0.0000 -0.0000

NIIJMER THICKNESS SPACING FO. LENGTH OENSITY CONOIICTIVYTY
(DEP INCH) (INCHES) (INCHES) (INCHES) (LB/CU-IN) (BTU/HR-FT-R)

L.P. SIDE FINS ------------------ 2000 .004 .101 *050 .297 6.000

0 I .P. SInE FIT'S -------------- - P20.00 .004 .101 0050 .297 6.000
U1 L.P. SIDE HFADER FINS --------- lo.on .006 *297

Lo H.P. SIDE HEADER FINS -------- 10.00 .006 .297
oN b SPLITTER PLATES --------------- .00 .297 10,000

WRAP-UP MATERIAL -------------- .060 .297 10,000
SPACER RARS 0------------------ 010. .297 10.000
RPAZE AATEPTL ---------------- .001 .297 10.000

FLOW AREA SURFACE FIN PLATE HYDRAULIC
RATIO AREA/VOLUME AREA/VOLUME AREA/VOLUME DIAMETER

(---- (1/IN.) (1/IN.) (1/IN.) (INCHES)

L.P. SIDE FTI'S --------------- .40936 26.239 17.798 8.440 .06241
H.P. SIDE FINS ------------------ .40936 26.239 17.798 8.440 .06241
L.P. SIDE HFAER FINS --------- .40963 17.339 8.716 8.624 .09450
H.P. SIDE HFA'ER FINS -------- .40963 17.339 8.716 8.624 .09450

EITRY TURNING EXIT TURNTM
LOSS LOSS LOSS ANGLF

(-----) ( (- (-----) (OEGREES)

L.P. STnF MEAnER FINS ------------ .40400 .18000 1.00000 30.00
H.P. SIDE HFADFR FINS --------- .40400 .60000 1.000 n o0.nn

FIGURE 2-3
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T TYPICAL RADIATOR DESIGN PROGRAM OUTPUT

CYCLE NUMRER 3

MASS FLOW CORE PRESSURE DROP HEADER PRES. DROP RET. DUCT PRES , nROP SUP, DUCT PRES. DROP INLET TEMP.
(LB/SEC) . .- - - (R)
*35730E00 .300Or-02 * 1660E-02 *27ROOE-03 *2780AE-03 .73311E*03

OUTLET TEMP. NO. INTERNAL FINS SINK TEMP. TUBE LENGTH NO- HEADER PAIRS EXTERNAL FIN EFF.
(R) --- (R) (FT)

*53600E-05000E03 3 .83205E01 10000E*1 .96455E*00

TUBE TNT. DTAm. TOTAL WEI~wT CORE WEIGHT HEADER WEIGHT DUCT WEIGHT NUMBER OF TUBES

) (IN) (LR) (LB) (LR) (LB) ....
(D .31667F+00 .1A029Fo03 117 64E+03 .33086E*02 *95645E*01 .41044E*02

Ln
w RADIATOR AREA TUBE SPACiNG EXT. FIN THICK. INLET WALL TEMP. OUTLET WALL TEMP. ARMOR THICKNESS

(SQ FT) (tN) (TN) (q) (R) (IN)
0 ,12526E*0l .44014F+01 ,40000E-01 ,72142E+03 .53395E+03 .71583E-01

HEADER FLnw 
0

Tv. FIN RARE TFmP. FILM COEFFICIENT REYNOLDS NO- PET. DUCT DyAM. SUp. DUCT OIAM4
(IN) (P) (BTU/SEC So FT F) --- (IN) (IN)
S15224E*01 .647?7c'03 .65653E-02 .21936E-05 .16170E+01 17477E+1

FL.UID SPEC. HFAT VULNERARLE AREA INTERNAL FIN EFF. COATING WEIGHT TUBE WEIGHT FIN WEIGHT

(RTU/LA F) (SQ FTI (LR) (LB (LB)
.592onE-01 .13075'+02 .:,4856E.00 .51764E*01 .49319E+02 .64612E+02

.60000E-02

FIGURE 2-4
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Step 8

The output of the summation program is presented in two forms.

The first (refer to Figure 2-5) is a tabulation of one line summaries

of cycle specifications and component geometry (including predicted

system weight and radiator area). The second form of output is avail-

able in plot form. The initial form of the plots are the computed

specified weight (including the variable weights, in lb/kwe , of the

BRU, recuperator, and radiator) for the system and the computed

specific radiator area plotted versus gross cycle efficiency. This

plotted output forms the basis for the determination of the boundary

of minimum attainable system weight as a function of system perform-

ance and output. Figure 1-4 shows a typical boundary generated in

this fashion. The basic philosophy employed during the study was that

one can determine the point on such a boundary which best expresses

the desired trade-off of cycle efficiency (fuel cost) and system weight

(launch cost). Having selected a point on the boundary, one seeks to

precisely define a system in this area such that no system variable

can be perturbated in any manner without a resulting upward departure

from the boundary. This philosophy implies that a variation of a

single system parameter (referred to as a single dimension parametric

study) should produce a trace (refer to Figure 2-6) of specific weight

versus efficiency which is tangent to the previously defined lower

boundary.

The philosophy of system selection was later expanded to include

the predicted performance of a particular (fixed) system across the

entire range of power output (off-design performance). This approach

will be discussed in more detail later in this section.

APS-5440-R
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I "TYPICAL SYSTEM SUMMARY OUTPUT I

q I CASE MW PRC RPM ER RETA NSC WCRU VCRU WR VR WRAD ARAD WD VD WT AT ECY
(DI

LO 1 84. 1,50n 5P000. .96 .98 .07 23.3 .15 34.2 .34 160.3 124.59 11.3 .27 368,3 65o3 .2652
0. 2 84. 1,50 52000. ,97 .98 .07 23.3 .15 39,8 .40 160.3 124.93 11.3 .27 363.1 64.0 .2711

0 3 84. 1.50 52000. ,98 .98 .07 23.3 .15 47.4 .48 160.3 125.26 11.3 .27 359.9 62.8 .2773

FIGURE 2-5



SINGLE DIMENSION PARAMETRIC STUDY RESULTS
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0.290 0.295 0.300 0.305 0.310 0.315 0.320 0.325 0.330

CYCLE EFFICIENCY

MS 3063-5

FIGURE 2-6
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2.1.4 Reference Design Selection

In order to select the recommended reference cycle, data was gen-

erated using both system design optimization computer programs and

system off-design performance computer programs. Over 8,000 completely

defined systems were designed to determine general system characteris-

tics over the power range of interest. In addition to that part of

the study, several other design approaches were examined to determine

which "fixed hardware" system (i.e., a particular system design) had

the most favorable performance characteristics over the entire power

range and how the off-design performance of a particular system com-

pared to the systems optimized at each power level.

The trends of this investigation are summarized in Figure 2-7.

The actual working curves were plotted on large (20 in. x 30 in.)

graph paper and sumbitted to the study program monitor. To avoid con-

fusion and to facilitate an explanation of the technical approach fol-

lowed, the trends only are shown in Figure 2-7.

LineOdefines the loci of minimum specific weight system designs

as a function of power level. The particular designs indicated as II

and III are those which are optimized (with regard to minimum specific

weight) when two or three heat source capsules are used. Points III-2

and III-1 indicate the off-design performance of system III operating

with two and one heat source capsules. Similarly, Points II-1 and

II-3 denote the off-design performance of System II.

A similar exercise was not performed for the optimum system using

one heat source because, due to the limited capability of the 0.5 kwe

alternator, it could not be made to produce 2 kwe during off-design

operation.

APS-5440-R
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SYSTEM SPECIFIC WEIGHT CHARACTERISTICS

t III-1
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Another possibility studied was a system assumed to be comprised

of the reference system (III) rotating unit and recuperator but with

varying size radiators. LinesO andO show the trends and an inspec-

tion of the data yields ample justification for the important conclu-

sion that one CRU and recuperator, which would be designed specifically

for the 3 heat source capsule case, would be quite suitable for use

over the entire power range. This is a tremendous advantage since it
precludes the need of multiple development efforts on several config-

urations of the same basic set of hardware.

The clinching argument for selection of the system optimized for

the 3 heat source capsule case as the reference system was the results

of a comparison study of the reference system with three other candidate
specific system designs. The system designs compared included:

(a) A system optimized for 0.5 kw . Since this system included

a CRU with an alternator of limited output, multiple units

would have to be employed in parallel to achieve 2.0 kwe

(b) Approach (a) modified to include an oversized-alternator.

However the heat exchangers, sized for the low power condi-

tion, represent a limitation.

(c) A system optimized to operate with 2 heat source capsules.

The system comparison results are shown in Table 2-1. The numbers

represent an attempt to give some quantification to the comparison.

APS-5440-R
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TABLE 2-1

SYSTEM COMPARISON MATRIX

4; Ie)' 4'

A. Optimized for 1 heat source 1 3 1 1 1 3 10
capsule (multiple systems
used for higher power)

B. Optimized for 1 heat source 1 1 3 2 2 2 11
capsule with 2.0 kw
alternator e

C. Optimized for 2 heat source 2 2 2 3 2 2 13
capsules

D. Optimized for 3 heat source 3 3 2 3 3 2 16
capsules

Merit Scale

3 - Most advantageous

2 - In between

1 - Least advantageous

AL The optimum 0.5 kwe system has a smaller diameter compressor than
the reference system (2.1 in. versus 2.3 in.)

Multiple units required to achieve 2.0 kwe
SHeat exchanges are undersized for higher power level applications,

resulting in inefficiency

/a Larger system, somewhat oversized for low power application

APS-5440-R
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3. TASK III - PRELIMINARY DESIGN OF ROTATING UNIT

3.1 Mechanical Design

The mini-BRU rotating group configuration consists of a single-

stage compressor, turbine, and an alternator an a common shaft. The

shaft is supported on gas-lubricated foil journal and thrust bearings

with self-acting start-stop capability. The journal bearings are

located in the alternator secondary air gap to minimize shaft length.

Further, in order to minimize losses, the machine design specifically

excludes seals; rather the journal and thrust bearings act as seals to

prevent gas flow from the compressor to turbine ends.

3.1.1 Bearings

The general design requirements for the mini-BRU foil gas bear-

ings are presented in Table 3-1. Based on these requirements, the

bearing design was initiated by conducting a parametric analysis to

determine the critical speed characteristic of the rotating group as a

function of the foil bearing stiffness. Results of this analysis,

presented in Figure 3-1, show that at low bearing spring rates both

the first and second critical speed regimes are far below the 100 per-

cent operating speed of 52,000 rpm. Also, the 160,000 rpm third cri-

tical is shown to be independent of spring rate and is far above even

the runaway speed (limiting speed due to aerodynamic component per-

formance characteristics) of 92,000 rpm.

Following the parametric analysis,a bearing spring rate of 3,300

lb/in. was selected, through successive iterations, as that yielding

the most desirable shaft dynamics. The bearing load versus shaft speed

plots are presented in Figure 3-2, for a shaft eccentricity of 0.0005

in. and journal diameter of 1.0 in. As may be noted from the figure,

the first and second criticals (7,200 rpm and 9,200 rpm respectively)

are significantly removed from the engine operating speed such that no

critical speed problem is anticipated. The third critical lying far

APS-5440-R
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FOIL BEARING GENERAL DESIGN REQUIREMENTS

* DESIGN SPEED = 52,000 RPM
* OPERATING TEMPERATURE = 450 0 F

>I * WORKING FLUID - (XE-HE) M.W. = 83.8

* AMBIENT PRESSURE
= 24 PSIA
= 95 PSIA

* ROTOR WEIGHT = 1.68 LB.
* LOW BEARING LOSS

MS 301120 LOW DRAG TORQUE

TABLE 3-1



CRITICAL SPEED VS BEARING SPRING RATE

3RD CRITICAL SPEED
160,000 1

FOIL BEARINGS

100,000

- .RUN AWAY SPEED = 92,000 RPM

m 80,000
DI TOTAL WEIGHT = 2.0 LB

TOTAL Ip = 0.0022LB-IN-SEC 2

S60,000
,.._-

100% OPERATING SPEED = 52,000 RPM
O 40,000

2,000 5,000 10,000 20,000 30,000

MS 3063-11 FOIL BEARING STIFFNESS, LB/IN

FIGURE 3-1



BEARING LOADS
AUXILIARY MAIN AUXILIARY

GAP GAP GAP

SK 1 = K3 = 3300 LB/IN
50 K2  KS K4  TOTAL WEIGHT = 2.0 LB .

m o K1  K TOTAL Ip = 0.0022 LB-IN-SEC 2 o
45- 0 o o

C4 C4 FOIL FOIL 0
O BEARING BEARING I

o 40-11
SPEED (RPM) 0 800 12,000 17,000 17,000 32,000 32,000 160,000

SK2, K4 (LB/IN.) 0 0 0 0 0 0 -772 -772

K5 (LB/IN.) -1580 -1940 -2190 -2610 0 0 -1245 -1245

30
20- -

.. = ,

n2030 40 50 60 70 80 90 100 110 120 130 140 150 160

10 2o 3o 40 50 60 70 80 90 100 110 120 130140 1s0 160
MS3063-12 SHAFT SPEED (XlO "3  RPM)

FIGURE 3-2
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above the runaway speed provides the potential for simplification of
the overspeed control design. The table at the top of Figure 3-2 sum-
marizes the unbalanced magnetic forces, expressed as "negative" bear-
ing spring rates, for the alternator in the motor start mode (0 through
17,000 rpm), during bootstrap operation (17,000 through 32,000 rpm) and
in the normal alternator mode producing electrical power (32,000 through
160,000 rpm). Data for the table was generated in the alternator
magnetic unbalance analyses for motor start and alternator operation
(refer to Figures 3-21 and Table 3-14, respectively).

The resulting foil journal bearing design best satisfying the load
requirements and yielding minimum losses is summarized in Table 3-2.

In order to properly size the foil thrust bearing for minimum
power loss, a turbine and compressor thrust balance analysis was con-
ducted. Figure 3-3 presents the estimated turbine thrust as a function
of back face slip factor and percent turbine scallop. As may be noted
from the figure a wide variance in thrust may be obtained by changing
the turbine shroud clearance (and hence slip factor) and/or decreasing
the turbine back face area through material removal. Further, Figure
3-4 shows the effect of back face slip factor and the addition of
compressor lip on net compressor thrust. Therefore, by selecting the
proper combination of shroud clearances, turbine scallop and compres-
sor lip height, an optimum system thrust balance may be achieved lead-
ing to a minimum loss thrust bearing design. This design is summarized
in Table 3-3.

The journal and thrust bearing power losses were estimated for
bearing cavity pressures of 24 and 95 psia (corresponding to the 1 and
3 capsule power level conditions). These results are presented in
Table 3-4. Estimated performance for the journal and thrust bearings,
plotted as power loss (watts) versus unit load (psi), is shown in
figures following Table 3-4.
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SJOURNAL BEARING DESIGN

* JOURNAL DIAMETER = 1.00 IN.

* BEARING LENGTH = 0.90 IN.

A" * NUMBER OF FOILS = 8

* THICKNESS OF FOILS = 0.003 IN. + COATING

* RADIUS OF CURVATURE = 0.70 IN.

* SWAY SPACE = 0.006 IN.

* PREDICTED SPRING RATE = 3300 LB./IN.
MS 3011-22

TABLE 3-2



TURBINE THRUST CHARACTERISTICS

20

10
NO SCALLOP

co&- 0
z 10 PERCENT SCALLOP

'--10

-20

0 0.2 0.4 0.6 0.8
BACK FACE SLIP FACTORMS 3011-52

FIGURE 3-3



COMPRESSOR THRUST CHARACTERISTICS

4040 
NO LIP

0.1 IN. LIP
30 - 0.2 IN. LIP

0 20

o 10

L-

0
0 0.2 0.4 0.6 0.8

MS 3011-53 BACK FACE SLIP FACTOR

FIGURE 3-4



THRUST BEARING DESIGN

* OUTSIDE DIAMETER = 1.75 IN.

* INSIDE DIAMETER = 1.00 IN.

S~ * NUMBER OF PADS = 10.00
m In

° * PAD THICKNESS = 0.003 IN. + COATING

* PAD PLATE THICKNESS = 0.005 IN.

* SPRING PLATE THICKNESS = 0.005 IN.

* PRE-LOAD =3.50 LBS.
MS 3011-21

TABLE 3-3



ESTIMATED POWER LOSS SUMMARY

LOSSES IN WATTS

24 PSIA 95 PSIA

, JOURNAL BEARING (BOTH) 77 116
(DI%

- THRUST BEARING (LOADED SIDE) 59 74

THRUST BEARING (UNLOADED SIDE) 39 58

TOTAL 175 248

MS 3011-23

TABLE 3-4



JOURNAL BEARING PERFORMANCE

70

95 PSIA60

L 4 050 24 PSIA .

Q mom 3 0m om40-

E 20
MO

10

0 1 2 3 4 5 6 7 8 9 10
MS 3011-24 UNIT LOAD, PSI



THRUST BEARING PERFORMANCE

LOAD, LB
2 4 6 8 10 12 14 16 18 20 22

80 95 Vlk

70

60 . ;
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0 5 30
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10

0
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3.1.2 Mini-BRU Materials

The materials for the mini-BRU were reviewed with tentative
selections based on experience gained from the NASA BRU and TAC pro-
grams. Although the stresses are modest throughout the machine, the
design life is at least 5 years. With the exception of the turbine-
end of the machine, operating life up to 10 years can be expected.

Figure 3-5 shows the material selections for mini-BRU. Stainless
steel will be used extensively in the center frame, compressor end, and
alternator heat exchanger for corrosion resistance. 347 CRES was
selected for its good fabricability and weldability. The compressor
wheel will be 17-4 PH or 410 CRES, combining the high strength and good
thermal conductivity necessary to extract heat from the thrust bearing.
Bearing materials were selected to be consistant with the BRU and TAC
designs. The alternator materials will result in good electromagnetic
performance and thermal conductivity.

The turbine nozzle will be fabricated from cast WI-52 because of
this metal's high temperature strength and stability and because it has
good weldability with the HS-188 sheet metal used for the turbine
scroll, shroud, and diffuser. The turbine wheel will be made from an
Inco 713 LC casting. This selection is based on long experience in
the design, fabrication and operation of many types of turbine wheels.
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MINI-BRU MATERIALS

PU

ul

080-188

347 R4CRES

MS 3011-5WI-52

434 3AL4750
347CRIES CU

1018 EE L STEEL -

07-4OR 4340[NCO 713 LC

CRES ---- --- -CUHP9-4-20

4340 1INCO 713 LC

6061-T6 ALUMINUM FOILS INC 7 50

MS 3011-54

FIGURE 3-5
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3.2 Aerodynamic Design

The aerodynamic design effort for this study focused on accurately
assessing the performance of small, single stage radial compressors
and turbines. Considerable attention was also given to coordinating
the compressor diffuser design with the alternator heat exchanger

design.

Table 3-5 summarizes the design factors which have an important

effect on compressor efficiency.

Compressor pressure ratio, considered above, has direct effects

on: the cycle flowrate required; the compressor size and efficiency;

and the cycle pressure levels. The secondary effects of compressor

pressure ratio selection include: rotating unit weight; heat exchanger/
radiator heat transfer and pressure drop requirements; and cycle effi-
ciency.

Evaluation of the combination of rotating and specific speeds

selected for the aerodynamic components cannot be rigorously analyzed,

excluding the remainder of the system. However, the combined effect

of these two parameters can be viewed thusly: Any number of combina-

tions of rotor and specific speeds can be found which result in a
particular cycle pressure level and flowrate. With the system pres-

sure levels and flowrates established, the system heat exchanger

requirements are virtually invariant. The cycle optimization now

centers on determining the particular combination of rotating speed

and specific speed which results in the highest aerodynamic efficiency.

High rotor speed results in small turbomachinery diameters and increas-

ing losses due to increased blockage, surface losses and other size

related phenomena. Low specific speeds eventually yield increasing

losses due to increasing hub, shroud and end wall losses and clearance

losses. After careful consideration of these factors and review of
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COMPRESSOR DESIGN PROBLEMS AND SOLUTIONS

PROBLEM RESULT
* LOW PHYSICAL SPEED IMPLIES MODERATE EFFICIENCY PENALTY

LOW SPECIFIC SPEED BECAUSE OF NON-OPTIMUM SPECIFIC
SPEED

* SMALL SIZE
(A) SMALL EXIT WIDTH + REASONABLE

" RUNNING CLEARANCE HIGH CLEARANCE LOSSES
T YCLEARANCE

S TYPICAL = 0.030EXIT WIDTH
CLEARANCETHIS CASE = 0.104EXIT WIDTH

(B) TOLERANCES, FILLET RADII
RELATIVELY LARGER SUBSTANTIAL EFFICIENCY PENALTY

* DESWIRL-RESWIRL VANES TO
ACCOMMODATE HEAT EXCHANGER MODERATE EFFICIENCY PENALTY

MS 3011-6

TABLE 3-5
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NASA LeRC data (based on extensive testing of closed cycle machinery
compressors) suitable performance penalties as a function of compres-
sor size were defined as shown on the following page. A similar char-
acteristic for the turbine is also shown.

The compressor design is summarized in Table 3-6 and Figure 3-6.
The reference design is compared to existing component experience in
Figure 3-7.

The turbine design is essentially a direct scale-down from exist-
ing single stage turbine. It is felt that there will be less diffi-
culty in achieving the required turbine efficiency than will be the
case for the compressor. The reference turbine design point is quite
consistant with test data obtained on a number of radial turbines, as
seen in Figure 3-8. The design point is summarized in Table 3-7 and
Figure 3-9.

For reference purposes, the method of calculating inlet and mean
specific speeds for the compressor and turbine is presented on Table
3-8.

3.3 Alternator Electromagnetic Design

3.3.1 Design Selection

The alternator is a four-pole Rice machine designed to have high
efficiency over a wide range of load conditions. Optimum system speed
was determined to be 52,000 rpm. Preliminary studies at 41,000;
52,000; and 60,000 rpm for 2, 4, 6, and 8-pole alternator designs
indicated that a four-pole machine had the smallest, lightest rotor
at each speed (refer to Table 3-9). Although total alternator weight
was slightly less for 6- and 8-poles, efficiency of these machines was
reduced by higher windage losses caused, in turn, by larger diameter
rotors.
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COMPRESSOR AND TURBINE SIZE CORRECTION

3

- 2

Sn

1 2 3 4 5 6 7 8.- 9 10
DIAMETER, INCHES

MS 3063-6



SCOMPRESSOR DESIGN POINT CONDITIONS

PRESSURE RATIO INLET TOTAL TEMPERATURE
eTOTAL TO TOTAL = 1.50 oTIN = 536 0R

EFFICIENCY
ETOTAL TO TOTAL = 0.76 PERFORMANCE PARAMETERS

*CORRECTED FLOW = 0.0756 LB/SECSPEED *CORRECTED SPEED - 51,153 R.P.M.
*SPECIFIC SPEED* = 44.3 (MEAN);

u 46.6(INLET) MISCELLANEOUS
*RPM = 52,000 *AXIAL CLEARANCE = 0.008 IN.

RRADIAL CLEARANCE = 0.008 IN.REYNOLDS NUMBER *NO. OF BLADES = 13
PT1 U2 D2  VANED DIFFUSER

S5.68 x 106 INLET GAS ANGLE = 76.70
* VANED DIFFUSER

INLET TOTAL PRESSURE EXIT MACH NO. = 0.125
SPIN = 70.8

*MSPECIFIC SPEED=(RPM)*(VOLUMETRIC FLOW RATE) *(R)%/ (A h %
MSTABLE 3-30634 PR

TABLE 3-6



COMPRESSOR VECTOR DIAGRAMS

0.067 IN. -- I CIS = 118.9 60.11 WIS= 239.0

(MSIREL= 0.329)

UIS = 206.9
INLET SHROUD

S R =0.456 IN. 2REL = 49.600 /32FL = 75.480

C C2 = 383.2 (M2 = 0.493)

CM = 96.7

20 --

R = 0.25 IN. 92BL = 31.00 / I

WU2= 113.5 CU2 = 3708

SCU21DEAL = 426.3

WIH = 156 S.F.= CU 2  = 0.87
CMIH = 107.7 46.450 CU21DEAL

IMPELLER EXIT

MS 3011-9 UIH = 113.2
INLET HUB

FIGURE 3-6



RADIAL COMPRESSOR EXPERIENCE
8.9=Do

4.2= Do

m I 3.2=Do

a 2.2 = Do

TAC BRU ASD CAT

77c  0.87 0.83 0.805 0.760

Pr 1.95 1.9 2.06 1.50

N 24,000 36,000 64,000 52,000

M 39.94 83.8 39.94 83.8

NSC 0.086 0.105 0.10 0.070

MS 3011-8

FIGURE 3-7



TURBINE EFFICIENCY EXPERIENCE (1-12-73)
100

90

UNIT Ns  REFERENCE

80
Z NASA TND-6605

I U.

S" . NASA TND-4384

I 0 NASA BRU 95 TND-7015
(4.59 DIA)

5 P & W 64.8 PWA FR2806

36-4 94.4 AiRESEARCH

60
305 65.5 AiRESEARCH

STUD 72.7 (PREDICTED; IZDATA = 87.6)

50 3 MINI BRU 44.6 BASE EFFICIENCY

0 20 40 60 80 100 120 140 160 180

MS 3011-46 SPECIFIC SPEED, Ns, (rpm)(ft)/(sec%)

FIGURE 3-8



STURBINE DESIGN POINT CONDITIONS

PRESSURE RATIO PERFORMANCE PARAMETERS*
e TOTAL TO TOTAL = 1.47 * EQUIV. FLOW = 0.0551 LB/SEC
* TOTAL TO D.E. STATIC = 1.4737 * EQUIV. WORK = 9.903 BTU/LB

EFFICIENCY * EQUIV. TORQUE = 1.134 IN-LB
* BASE TOTAL TO TOTAL = 0.896 * EQUIV. SPEED = 42,899 RPM
*CLEARANCE LOSS = 0.039 MISCELLANEOUS
* DISK FRICTION = 0.021

* WHEEL DIAMETER = 3.0 IN.SNET ADIABATIC = 0.832 * PRESSURE RECOVERY = 0.6
SPEED *NOZZLE EXIT ANGLE = 720
* SPECIFIC SPEED* = 44.3 (MEAN); * DISCHARGE MACH NO. = 0.087

41.5(INLET) * AXIAL CLEARANCE = 0.008 IN.
* RPM = 52,000. * RADIAL CLEARANCE = 0.008 IN.
* REYNOLDS NO. (i'r) = 64,500 * NO. OF BLADES = 11
INLET TEMPERATURE
* TIN = 20600 R

*SPECIFIC SPEED = SPEED (RPM) * (VOLUMETRIC FLOW RATE)2 * (R)/ /( ise /

MS 3063-3 ** STANDARD CONDITIONS ASSUMED: T=58.670 F; P=14.7 PSIA

TABLE 3-7



TURBINE VECTOR DIAGRAMS

1.6 0.09 218"33 2

1.4
335

1.2 69.7 16

1 1.0 314
LT

L 0.8 0.8424 VECTOR DIAGRAM

0.6
0.5

0.4

0.2

0
0.5 1.0

MS3011-11 FLOWPATH

FIGURE 3-9
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TABLE 3-8

METHOD OF CALCULATING SPECIFIC SPEED

specific speed)mean = rpm * (QlD * Q2D) /4/(Ah)3/4

Q2D = QID * PR/TR

Q1D = o/fm

specific speed inlet = specific speed mean /-

Compressor

specific speed) mean 44.3

specific speed)inlet = 46.6

Turbine

P = PR = 1.47 PIN = 105 psia

0

m = AT = 244.8 T = 2060

TR = 1.136

s52,000 * (0.875 )1/2
specific spee inlet = (0.0592 * 244.8 * 778.16)3/4

52,000 * (0.875)1/2
i,100

52,000 * 0.935 = 44.3
1,100

specific speed)mean = specific speed)inlet TRJ

1.13644.3 * 1.36 = 41.5
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SMINI-BRU SPEED AND POLE STUDY

DATA DESIGN POINT: 2.169 KW, 66.24 VOLTS, 13.19 AMPS
-0.8271 PF, XL = 0.15 PU, ZBASE = 5.02 OHMS LOSSES - WATTS

Zm

(n a x >- 0(<

U. -- =- (

I.I-

P 8 POLE 41,000 2733 86.36 90.10 1.9 7.060 1.828 46.25 81.76 8.97 97.61 3.81 104.0 342.5
(D 1 52,000 3467 84.25 89.68 1.8 5.937 1.532 40.22 101.1 8.50 94.7 5.02 156.0 405.5

O60,000 4000 82.84 88.96 1.7 5.433 1.406 36.39 125.2 7.58 92.67 5.66 179.2 446.8

o

6 POLE 41,000 2050 87.99 90.95 1.8 6.750 1.509 52.99 59.29 17.20 83.83 2.65 80.08 296.0
52,000 2600 86.42 90.71 1.7 5.714 1.278 45.71 76.37 16.20 80.78 2.94 118.80 340.8
60,000 3000 85.66 90.47 1.6 5.170 1.150 41.25 91.20 14.35 78.46 3.24 134.40 363.0

4 POLE 41,000 1367 88.41 90.67 1.7 7.090 1.280 64.09 41.04 45.59 71.00 1.40 61.18 284.3
DESIGN SELECTION 52,000 1733 87.51 90.78 1.6 5.977 1.079 55.33 52.50 42.48 68.33 1.57 89.35 309.5

60,000 2000 87.26 90.89 1.5 5.366 0.956 50.05 61.96 37.30 66.35 1.76 99.29 316.7

2 POLE 41,000 683 87.83 90.77 1.8 11.03 1.451 96.52 27.02 56.93 39.05 0.98 80.0 300.5
52,000 867 86.88 91.21 1.7 9.183 1.204 83.41 33.83 53.68 36.82 1.08 118.4 327.2
60,000 1000 86.66 91.55 1.6 8.227 1.068 75.71 38.77 48.13 36.12 1.21 133.7 333.7

*INCLUDES WINDAGE LOSSES IN THE MAIN GAP AND 1/2 OF THE CONE SECTION

MS 3011-33

TABLE 3-9
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Since high efficiency rather than minimum weight was a design

goal, the four-pole machine was selected for further optimization and

analysis. Practical considerations of fabrication also favored a
four-pole machine.

The analysis employed a math model based on conventional salient-

pole alternator theory. The model included the following routines:

(a) Pole and flux collector geometry; stator geometry.

(b) Pole leakage

(c) Rotor windage loss

(d) End bell design and leakage

(e) Control and series field design

(f) Pole head loss

(g) Eddy factor for stator windings

(h) Apparent power factor, a-c volts and amps, d-c volts and

amps, distortion factor, and rectifier losses for operation
into a three-phase, full-wave rectifier load.

(i) Iteration of stator turns to achieve specified commutation

reactance.

The operation of the alternator math model is such that the
initial or "design" load condition synthesizes a basic geometry.

Then, when subsequent load conditions are applied, performance is
calculated using the initial basic geometry. The basic geometry can
readily be changed either by changing the initial "design" load data

or by changing initial design parameters such as pole flux density,

winding reactance, or an air gap dimension.

APS-5440-R
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Figure 3-10 describes the magnetic circuit used in the alternator
math model. An understanding of this circuit is necessary to inter-
pret the magnetic data presented in Table 3-10.

The math model made it possible to rapidly compare many design
variations while maintaining consistent values for flux densities,
winding reactance, or geometric features as appropriate. Figure 3-11
shows the effect of different designs on efficiency at various load
conditions. The 1.5 in. diameter rotor design was selected to meet
the maximum output requirements and provide good efficiency at part
load. The design point rating of the selected machine is:

o Four pole Rice

o 65.9 volts, L-N

o 12.27 amps per phase

o 2.0 kw

o 2.43 kva

o 3 phase "Y" connected

o 52,000 rpm

o 1733 Hz

A summary of performance of the recommended design for d-c and a-c
loads is presented in the following section.

3.3.2 Design Analysis

Table 3-10 presents magnetic circuit data for the initializing or
design load case and for three different d-c load conditions corre-
sponding to the power available from 1, 2, and 3 energy capsules.

Figure 3-12 presents the alternator wiring diagram used in this
analysis and clarifies the proposed excitation system.
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RICE ALTERNATOR MAGNETIC CIRCUIT
TO CIRCUITS
SAME AS WNORTH POLE MAIN ARMATURE TEETH CORE CORENO. 1 GAP REACTION

POLE LEAKAGE OF
NORTH POLE NO. 1

NORTH
POLES

SLEAKAGE UNDER FIELD CORE

SFLUX 
LEAKAGE THROUGH

COLLECTOR FIELD COILS

FRAME

1 COLLECTOR ENDBELL ENDBELL FIELD FRAME FIELDGAP BELOW BY (1 SERIESFIELD FIELD + 1 CONTROL)
NORTH HALF OF MACHINE . SOUTH HALF

" OF MACHINE
SYMMETRICAL

MS3011-32= RELUCTANCE -i-= MMF " = FLUX

FIGURE 3-10



MAGNETIC DATA

INPUT POWER

0.883 KW (1 CAPSULE) 1.805 KW (2 CAPSULES) 2.16 KW (DESIGN) 2.574 KW (3 CAPSULES)

d N w w w ZE ww w W Wi -

u U. C, o U., ( 0 ,- L.o 0 Z
a-- 0 o <-

MAIN GAP 0.0205 22.10 36.85 236.0 24.64 41.08 263.1 25.55 42.61 272.9 26.70 44.52 285.0
( En TEETH 81.90 4.786 91.31 7.624 94.70 11.72 98.96 30.3

L' CORE 0.4317 25.60 0.2278 28.54 0.2464 29.60 0.2559 30.93 0.260

- A. ARMATURE REACTION 52.53 142.4 179.6 222.0

- ,~ POLE LEAKAGE 27.94 8.195 11.55 12.97 27.94

POLES* 0.8111 60.59 74.70 79.20 72.38 89.23 127.6 77.06 95.00 165.5 83.45 102.9 277.7

FLUX COLLECTOR* 0.7823 60.59 74.45 26.29 72.38 92.52 43.31 77.06 98.50 62.51 83.45 106.7 154.1

COLLECTOR GAP* 0.0200 3.185 60.59 19.02 119.1 72.38 22.73 142.3 77.06 24.19 151.5 83.45 26.2 164.0

FIELD LEAKAGE*
UNDER COIL* 9.73 5.05 7.07 8.21 11.04
THRU COIL* 10.48 5.47 7.68 8.92 12.01

END BELL* 1.066 65.64 61.58 4.198 79.45 74.54 6.339 85.27 80.00 7.543 94.47 88.65 11.48
1.177 71.11 60.39 4.234 87.13 74.00 6.522 94.19 80.00 7.090 106.5 90.41 13.10

FRAME 22.35 71.11 60.39 9.580 87.13 74.00 14.76 94.19 80.00 17.89 106.5 90.44 29.63

TOTAL AMP
TURNS/1/2 MACHINE 536.0 754.2 877.2 1188.

*VALUES PER 1/2 MACHINE (NOT PER POLE) IN ACCORDANCE WITH MAGNETIC CIRCUIT

MS 3063-13

TABLE 3-10



ALTERNATOR EFFICIENCY DATA
-ONE CAPSULE OUTPUT 4 POLE MACHINE

95t -TWO CAPSULE OUTPUT 52,000 RPM

-- THREE CAPSULE OUTPUT
S' (INCLUDES MAIN GAP90- -

' - AND /2 OF CONE LOSSES)

85-
/ , . DESIGN POINT

* RATING-KW
80 (0.83 P.F.)

0.62 0.91 1.21 1.6 2.0 2.5 ROTOR
1.1 1.2 1.3 1.4 1.51.6 - DIAMETER

S1.4 1.5 lINCHES
0 1.0 2.0 3.0 3.5

MS 3011-34 OUTPUT POWER, KWe

FIGURE 3-11



WIRING DIAGRAM
SERIES FIELD

IDCGRS IDC NET .- VSF --

TURNSF
ST(ALL IN SERIES)

VACLN u- IIDCFLD

c. JREGULATOR

-al
> VDCNET

-i JCONTROL FIELD
VCFLD TURNCF

STATOR -- (ALL IN SERIES)

IDCGRS - TOTAL DC CURRENT FROM RECTIFIER, VDC NET - DC BUS VOLTAGE, DC VOLTS
AMPS

IDCFLD - CONTROL FIELD CURRENT,AMPS TURNSF - TOTAL NUMBER OF TURNS IN

IDCNET - DC LOAD CURRENT, AMPS SERIES FIELD
VACLN - LINE TO NEUTRAL VOLTAGE, AC VOLTS TURNCF - TOTAL NUMBER OF TURNS IN
VCFLD - VOLTAGE ACROSS CONTROL FIELD, CONTROL FIELD

DC VOLTS
VSF - VOLTAGE ACROSS SERIES FIELD,

DC VOLTS
MS 3011-29

FIGURE 3-12
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Significant electrical parameters of the alternator are listed in

Table 3-11. These values are based on the Design Load case in which

base alternator voltage is 65.9 VLN; base alternator current is 12.27

amps ac, and the frequency is 1733 Hz. Since a rectifier load is speci-

fied, the subtransient reactance is a critical parameter for this

application because it determines the apparent power factor of the

load as a function of load current.

When the alternator is regulated to maintain a constant rectified

load voltage of 120 vdc, change in load current will cause a change in

apparent load power factor, alternator ac voltage and field excitation.

This is depicted in Figure 3-13.

Operation at 3 pu short circuit is specified; therefore, a series

field is required to provide adequate excitation for the short circuit

condition. This requirement defines the slope of the series field

excitation line shown in Figure 3-14. The control field curve is

simply the difference between the total field curve and the series

field curve. The use of a series field is not conducive to optimum

efficiency at every load condition since the current density is not

equal in the series and control field windings, except at certain

points.

The losses in the control field and series field, the rectifier

loss, and the alternator efficiency are presented in Table 3-12 and

Figure 3-15.

Alternator losses at unity power factor at various ac load condi-

tions are tabulated in Table 3-13. The corresponding efficiency and

loss curves are shown in Figure 3-16.

Alternator characteristics at unity pf load conditions, no-load,

and short circuit are shown in Figure 3-17. Zero pf characteristics

are shown in Figure 3-18.
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ALTERNATOR PARAMETERS
REACTANCE & RESISTANCE, FIELD TIME CONSTANT

BASE IMPEDANCE ZBASE 5.371 OHM

RESISTANCES
ARMATURE (@ 360 0 F) RA 0.0944 OHM
FIELD (@ 3500 F) - 2 CONTROL FIELDS IN SERIES RCF 9.295 OHMS

- 2 SERIES FIELDS IN SERIES RSF 0.0669 OHMS

REACTANCES

DIRECT AXIS SYNCHRONOUS XD 1.040 PER UNIT
QUADRATURE AXIS SYNCHRONOUS XQ 0.556 PER UNIT
ARMATURE LEAKAGE XL 0.152 PER UNIT
FIELD LEAKAGE XF 0.286 PER UNIT
ZERO SEQUENCE XO 0.066 PER UNIT
NEGATIVE SEQUENCE X2 0.200 PER UNIT
TRANSIENT XDU 0.439 PER UNIT
SUBTRANSIENT DIRECT* : X"D 0.382 PER UNIT
SUBTRANSIENT QUADRATURE* zX"O 0.382 PER UNIT

FIELD TIME CONSTANT (HOT) SHORT CCT TPD 0.0137 SECONDS
OPEN CCT 0.0369 SECONDS

*ESTIMATED VALUE FOR RICE ROTOR WITH NO DAMPER CAGE
MS 3063-14

TABLE 3-11



EXCITATION CHARACTERISTICS - DC LOAD
-1.0

APPARENT PF
-0.9

.0.8

-4I 1

-0.7-.,,-

120 VDC (NET)

110

100 20

90 18

a% .9 70 14

S60 12

40 ..8 c

30 -IDC (NET) 6

20 - 4

10 2

0 0
0 100 200 300 400 500 600 700 800 900 1000 11001200

MS 3063-15 AMP-TURNS PER 1/2 MACHINE

FIGURE 3-13



FIELD CURRENT - DC LOAD

2400 _i

I /
-2200 I

2000I

< 1800

S1600-

(D I_ C. 5
n ,1400

0 3 1200

1000
. 8CONTROL FIELD

800 -(TURNCF = 671 TURNS
00j, OF AWG NO. 20 HML

o600_ RCFLD = 9.295 OHMS
S600 AT 350°F)

400 SERIES FIELD

S(TURNSF = 66.4
200 RSFLD = 0.0669 OMS i 3500F) - -

0 2 4 6 8 10 12 14 16 18 20MS 3063-16 IDC (NET

FIGURE 3-14



ALTERNATOR AND RECTIFIER LOSSES [(KW)

INPUT POWER

2AMPDCNET 4AMPDCNET 1 CAPSULE 2 CAPSULES DESIGN 3 CAPSULES
(0.315 KW) (0.563 KW) (0.883 KW) (1.805 KW) (2.16 KW) (2.574 KW)

CORE 0.00984 0.01050 0.01145 0.01423 0.01530 0.01671
TEETH 0.01709 0.01823 0.01988 0.02471 0.02657 0.02902
STATOR COPPER 0.00086 0.00301 0.00742 0.03025 0.04278 0.05948
STRAY 0.00004 0.00012 0.00030 0.00124 0.00175 0.00244

La En POLE HEAD 0.01418 0.01565 0.01809 0.02780 0.03249 0.03871
(D I CONTROL FIELD 0.01153 0.01031 0.00921 0.00914 0.01406 0.02879

SERIES FIELD 0.00024 0.00095 0.00247 0.01077 0.01550 0.02163
o WINDAGE 0.01281 0.02071 0.02962 0.05234 0.06019 0.06904

TOTAL (ALTERNATOR) 0.06659 0.07948 0.09844 0.17048 0.20864 0.26582
EFFICIENCY (ALT) 79.8% 86.0% 88.9% 90.6% 90.3% 89.7%
RECTIFIER (BASED ON LOSS

ECUIVALENT TO 1.5 V ) 0.00330 0.00625 0.00992 0.02047 0.02450 0.02908EQUIVALENT TO 1.5 VFW D

TOTAL LOSSES 0.06989 0.08573 0.10836 0.19095 0.23314 0.2949
EFFICIENCY (DC NET) 77.5% 84.8% 87.7% 89.4% 89.3% 88.6%

MS 3063-17

TABLE 3-12



EFFICIENCY AND LOSSES - DC LOAD

90

89

87 / E F DC

88 0.30 / TOTAL LOSSES

86 0.28

S85 0.26

S84 0.24

m 83 0.22

S2082 0.20

M 81 0.18

•Js ,80 0.16
o

79 0.14

78 0.12

77 0.10

0.08 - wl
0. c", WINDAGE LOSS

, 0.06
Sr--RECTIFIER LOSS

0.0 / (FOR 1.5V AVG FWD DROP)
0.02 - PFLD

0 --- * PCFLD
0 2 4 6 8 10 12 14 16 18 20

MS 3063-18 IDG (NET)

FIGURE 3-15



ALTERNATOR LOSSES (KWJ AT UNITY P.F.

AC MODE: IAC = 12.27 AMPS VAC = 65.9 VOLTS

LOAD CONDITIONS
PER UNIT CURRENT

0 0.25 0.50 0.75 1.00 1.25

CORE 0.01471 0.01484 0.01485 0.01482 0.01479 0.01483
e TEETH 0.02555 0.02577 0.02579 0.02573 0.02569 0.02575

STATOR COPPER 0.0000 0.00267 0.01070 0.02407 0.04278 0.06685
3o 0. STRAY 0.0000 0.00011 0.00044 0.00099 0.00175 0.00274

POLE HEAD 0.02089 0.02175 0.02379 0.02709 0.03177 0.03788
FIELD* 0.01055 0.01125 0.01284 0.01536 0.01911 0.02417
WINDAGE 0.000 0.02376 0.04067 0.05589 0.07019 0.08386
TOTAL 0.07170 0.1002 0.1291 0.1639 0.2061 0.2561
EFFICIENCY 85.81% 90.37% 91.73% 92.16% 92.21%

*BASED ON DESIGN WITHOUT SERIES FIELD COMPOUNDING
MS 3063-19

TABLE 3-13



EFFICIENCY & LOSSES - UNITY POWER FACTOR LOAD

1.00

> ELECTRICAL EFFICIENCY
z 0.90 -OVERALL EFFICIENCY
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ALTERNATOR CHARACTERISTICS AT ZERO POWER FACTOR
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3.3.3 Motor Start Characteristics

Figures 3-19 and 3-20 show the expected performance characteris-

tics of the alternator when operated as an induction motor.

For purposes of evaluation, the breakaway torque is estimated to

be 0.22 to 0.33 Newton-meters (2.0 to 3.0 in.-lb); however, the maximum

drag torque is expected to be about 0.33 to 0.45 Newton-meters (3.0

to 4.0 in.-lb) at about 4000 rpm. Using the torque/slip relationship

of

1/2T = SLR S

the required stall torque to accelerate past the maximum drag torque

speed is 1.58 per unit.

3.3.4 Magnetic Unbalance Characteristics

The standstill forces that would be developed with the rotor mag-

netically displaced and the unit excited for rated load and short cir-

cuit conditions are given as negative spring rates in Table 3-14.

These forces were calculated using standard magnetic theory.

It has been demonstrated that the force is significantly reduced

when the rotor is rotated. As reported in NASA CR-1452, the force is

reduced by a factor of four in a homopolar inductor alternator. Tests

with the Brayton Rotating Unit (BRU) four-pole Rice alternator demon-

strated significant reduction, in that excitation at standstill locked

the rotor; whereas the same excitation at a few hundred rpm only

slightly affected the rotor orbit. A mathematical model of the Rice

machine was developed to evaluate the effects of rotation on unbalance

forces in the auxiliary gap. The results of the analysis indicated that

the force was reduced by a factor of two, maximum, at speeds greater

than 7000 rpm. A similar reduction in main gap force is expected.
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MOTOR START CHARACTERISTICS I
PER UNIT RATING

65.9 VOLTS, L-N
12.27 AMPS PER PHASE
2.0 KW
2.43 KVA
3.25 IN.-LB (0.367 NEWTON-METERS)
52,000 RPM

1200 HZ - 1733 Hz
z. z0.038 VOLTS/Hz4.0 1800 HZ = 2.0 0.0381200 HZ

* 3. 1800 HZ
wC Z

&. m 600 HZ ,gon o
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o o

o o
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o 0
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FIGURE 3-19



MOTOR START CHARACTERISTICS II
PER UNIT RATING
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MAGNETIC UNBALANCE - ALTERNATOR OPERATION
STANDSTILL FORCE 'SPRING RATE' 1

3 CAPSULES
1 CAPSULE 2 CAPSULES 3 CAPSULES SHORT CCT

LOCATION (36.8 AMPS/0)

AUXILIARY GAP (EACH BEARING) 1424 2033 2702 2492
c N/CM (LB/IN.) OF DISPLACEMENT (813) (1161) (1543) (1423)

co a MAIN GAP 2988 3710 4360 1470
C N/CM (LB/IN.) OF DISPLACEMENT (1706) (2118) (2490) (840)

1VALUES ARE IN THE DIRECTION OF MINIMUM AIR GAP.

EFFECT OF ROTATION: THE SPRING RATE WILL BE REDUCED BY A FACTOR OF 2
AT SPEEDS GREATER THAN 7000 RPM AND WILL BE DIRECTED
AT AN ANGLE OF 24.5 DEGREES PRECEEDING THE MINIMUM
AIR GAP.

MS 3063-21

TABLE 3-14
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The effect of magnetic unbalance due to field excitation is

minimized by inhibiting excitation until the machine has passed through

the critical speeds and the gas bearing film is established.

Displacement will also result in magnetic unbalance forces during

motor starts. Figure 3-21 shows the expected "negative spring rate"

as a function of speed for a motor start with 0.003 in. displacement

and using a fixed 31 v, 600 Hz supply as required to provide worst

case starting torque (see Section 3.3.2).
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3.4 Thermal Analysis

3.4.1 General Approach

The rotor thermal analysis was performed in three parts. The

turbine, and compressor and thrust runner were both analyzed at

AiResearch, Phoenix, while the alternator portion of the rotating

group was analyzed by the Los Angeles Division. This approach is

shown diagrammatically in Figure 3-22.

The gas path boundary conditions for the Phoenix portion of the

analysis were those specified for the three capsule reference design,

shown in Figure 1-6. Several heat flexes were specified by Phoenix at

the interface with the alternator (see Figures 3-23 and 3-24). Los

Angeles then used these heat flux and interface temperatures as bound-

ary conditions for thermal analysis of the alternator. The results of

the combined analysis for the 3 and 1 capsule power levels are pre-

sented in Figures 3-25 and 3-26.

3.4.2 Turbine-End

The results of the turbine-end thermal analysis for both 1 and 2

percent cooling flows are presented in Figure 3-23. The maximum equiv-

alent stress is less than 15 ksi which, for the 713LC turbine material,

operating at metal temperatures less than 1300 0F, represent a very con-

servative design.

3.4.3 Compressor-End

The compressor and thrust runner thermal analysis data are pre-

sented in Figure 3-24. The maximum heat flow rate to the compressor

of approximately 120 watts is quite low compared to that of other turbo-

machines designed by AiResearch, and no thermal stress problems are

anticipated over the design life goal of 5 yr. In addition, the radial
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TURBINE WHEEL THERMAL ANALYSIS
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COMPRESSOR AND THRUST RUNNER THERMAL ANALYSIS
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THERMAL DESIGN SUMMARY - 3 CAPSULES

@MEAN HEIGHT
OF FINS

j 2 MAX

FIN GEOMETRY

(DI
Ln = o.ool

W = 1385 LB/HR 
=

ST= 200 2 204 206 209 211 213 215

229 223 229 248 249 236 239
25 252

245 2 1 2 258 2 2 26 2 267 2
6 6 5 5 6 6 2

25 7 268 61 0 3 11 6 308 120

95 PSIA 296 305

187 6 285 366 387 90, 550 1050
164 313 328 380 33863 321

END TURN SPACE 33

MS 3011-15

FIGURE 3-25



THERMAL DESIGN SUMMARY - 1 CAPSULE

W 472 LBS/HR 170 174 177 180 183 186 190 10

P = 39 PSIA 09 204 208 219 221 215 220

MS 3011-16

S 36 254 35FIGURE 
2 3-26 282FLOW 253 2 45 26

LB/HR - ~267 312 315 297 9
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MS 3011-16

FIGURE 3-26
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thermal gradient in the thrust rotor is small and the axial gradient

even smaller. As a result, there is virtually no thermal distortion

of the thrust rotor, and thrust bearing performance is unimpaired.

3.4.4 Alternator

The results of the thermal analysis on the final configuration of

the mini-BRU alternator for 3 and 1 heat source capsules are presented

in Figures 3-25 and 3-26. The heat load from the turbine was input as

a heat flux (watts) versus shaft temperature. Heat generation in the

foil journal and thrust bearings was also input to the analysis. A

leakage flow of 2 percent was assumed to flow along the shaft from the

compressor discharge to the back face of the turbine wheel. Tempera-

tures in critical areas of the stator are seen to be well below the

4000 F maximum tolerated and other temperatures throughout the machine

are compatible with the materials used.

From the results of this analysis and other preliminary work, it

appears that the final design selected was the most logical choice of

all the schemes originally contemplated. The simple, machined rectan-

gular fin approach employed in the final design (fin details on Figure

3-25) proved adequate without resorting to the complexity of a brazed

plate fin design. The pressure drop in the rectangular fin design

(0.001 AP/P) was well below the design objective (0.005 AP/P). The

final design chosen improves cycle performance by adding heat after

the compressor.
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3.5 Heat Exchangers

3.5.1 Recuperator

During the course of the system optimization study, a number of

alternative recuperator core configurations were investigated. The

final selection was determined only after a detailed analysis, which

included manufacturability, unit life expectancy, and performance con-

siderations, was made.

Table 3-15 presents the reference recuperator design summary.

The effectiveness of 0.975 and the fractional pressure drop of 0.70

percent (total both sides) represent the optimum combination with

regard to minimizing total system weight.

3.5.2 Radiator

Many radiator configurations were investigated, and the configura-

tion selected for the reference system is shown in Figure 3-27. The

first configuration considered was steel tubes with internal fins,

steel headers and ducts, and aluminum external fins and armor. Cases

were run with 0, 4, 8, 16 and 32 radial fins within each tube. The

bare tube case (no internal fins) showed no weight penalty over its

finned counterparts. Radiators of all aluminum configuration were

also investigated and presented an alternative 25 percent reduction in

radiator weight, however a bimetal joining problem exists with the

stainless steel ducting at two locations in the loop.

The design values for pressure drop allocation were optimized for

the minimum total weight of the radiator and also for the minimum total

of recuperator and radiator weight.

A summary of geometry and performance for the reference design is

presented in Section 1.3.2 of this report. Throughout the analysis of

the radiator, a 20 percent pressure drop margin was reserved.
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RECUPERATOR DESIGN SUMMARY

ORIGINAL NEW
DESIGN* DESIGN*

FIN CONFIGURATION:
NUMBER OF FINS PER INCH 28. 20.
FIN HEIGHT (INCHES) 0.154 0.101
FIN THICKNESS (INCHES) 0.004 0.004
FIN MATERIAL NICKEL HAST-X

m I
ul PLATE CONFIGURATION:

PLATE THICKNESS (INCHES) 0.006 0.008
PLATE MATERIAL HAST-X HAST-X

HEADER CONFIGURATION:
NUMBER OF FINS PER INCH 10. 10.
FIN THICKNESS (INCHES) 0.006 0.006
FIN MATERIAL NICKEL HAST-X

GENERAL:
SPACER BAR THICKNESS (INCHES) 0. 0.100
WRAP-UP THICKNESS (INCHES) 0.060 0.060
BRAZE THICKNESS (INCHES) 0. 0.001

MS3011-47 *MATRIX FOR BOTH HIGH AND LOW PRESSURE SIDES.

TABLE 3-15



RADIATOR MODEL

HEADERS

TUBES

ALUMINUM ARMOR

L ALUMINUM FINS
(MINIMUM THICKNESS

C= 0.040 IN.)

STEEL TUBES
(MINIMUM WALL = 0.030 IN.)
NO INTERNAL FINS

MS 3063-24

FIGURE 3-27


